一、前言 模具作为模压产品生产的关键工装,其设计与生产周期日益成为决定新产品开发周期的决定因素。目前工业发达国家的航空航天、汽车、机械、模具、机床等行业首先得益于该项新技术,使上述行业的产品质量明显提高,成本大幅度降低,获得了市场竞争优势。在汽车工业中,过去新车型的开发周期一般为10年,现在缩短为2~3年。福特、通用、丰田等公司的新车型开发周期仅为1年半,这一切都得益于企业模具设计与制造手段的现代化水平的提高。高速切削技术逐渐应用于加工铸铁和硬铝合金,尤其是加工大型覆盖件冲压模、锻模、压铸模和注射模,目的是在减少加工时间和研制时间的同时提高尺寸公差和表面一致性。目前国际上高速切削加工技术主要应用于汽车工业、模具行业、航空航天行业,尤其是在加工复杂曲面的领域,工件本身或刀具系统刚性要求较高的加工领域,显示了强大的功能。国内高速切削加工技术的研究与应用始于20世纪90年代,也是主要应用于模具、航空、航天和汽车工业,但采用的高速切削CNC机床、高速切削刀具和CAD/CAM软件等以进口为主。
二、高速切削加工应用的关键技术 数控高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用得到了解决。其切削速度、进给速度相对于传统的切削加工,以级数级提高,切削机理也发生了根本的变化。与传统切削加工相比,切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了30%~40%,切削力降低了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。随着切削速度的提高,单位时间毛坯材料的去除率增加,切削时间减少,加工效率提高,从而缩短了产品的制造周期,提高了产品的市场竞争力。同时,高速加工的小量快进使切削力减少,切屑的高速排除,减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。由于切削力的降低,转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的表面粗糙度对低阶频率最为敏感,由此降低了表面粗糙度。在模具的高淬硬钢件(HRC45~65)的加工过程中,采用高速切削可以取代电加工和磨削抛光的工序,避免了电极的制造和费时的电加工时间,大幅度减少了钳工的打磨与抛光量。一些市场上越来越需要的薄壁模具工件,高速铣削可顺利完成。而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。这些优点在资金回转要求快、交货时间紧急、产品竞争激烈的模具等行业是非常适宜的。 1.高速切削加工 高速加工切削系统主要由可满足高速切削的高速加工中心、高性能的刀具夹持系统、高速切削刀具、安全可靠的高速切削CAM软件系统等构成,因此,高速加工实质上是一项大的系统工程。随着切削刀具技术的进步,高速加工已可以应用于加工合金钢(HRC>30),广泛地应用于汽车和电子元件产品中的冲压模、注塑模具等零件的加工。高速加工的定义依赖于被加工的工件材料的类型。图1是采用高速加工时对不同材料普遍采用的切削速度。例如,高速加工合金钢采用的切削速度为500m/min,而这一速度在加工铝合金时为常规采用的顺铣速度。 随着高速加工的应用范围扩大,对新型刀具材料的研究、刀具设计结构的改进、数控刀具路径新策略的产生和切削条件的改善等也有所提高。而且,切削过程的计算机辅助模拟技术也出现了,这项技术对预测刀具温度、应力、延长刀具使用寿命很有意义。铸造、冲模、热压模和注塑模加工的应用代表了铸铁、铸钢和合金钢的高速切削应用范围的扩大。工业领先的国家在冲模和铸模制造方面,研制时间大部分耗费在机械加工和抛光加工工序上,如图1所示。冲模或铸模的机械加工和抛光加工约占整个加工费用的2/3,而高速铣可正好用来缩短研制周期,降低加工费用。
图1 高速铣削制造周期与常用材料切削速度 |