图1 两刃车刀加工原理
多刃车刀的结构相当于将多把单刃车刀组合在一起。以两刃车刀为例,其加工原理如图1所示。设第一切削刃的切削深度为ap1,第二切削刃的切削深度为ap2,其最大切削深度为各切削刃切削深度之和,即ap=ap1+ap2。当切削深度小于ap2时,第一切削刃悬空,只有第二切削刃工作。根据“先粗后精”的加工原则,各切削刃的切削深度应依次递减,即ap1>ap2。与普通车刀相比,多刃车刀可在满足相同表面质量要求条件下增大切削深度,提高加工效率。同时,当加工余量一定时,采用多刃车刀可提高加工精度等级,降低加工表面残余应力,减轻车床颤振,改善工件表面质量。多刃车刀适用于光轴、通孔、圆柱体工件等的加工,但用于加工阶梯轴时需适当加宽退刀槽,对应用范围有一定限制。
2 多刃车刀改善加工表面质量的机理
机械加工表面存在表面粗糙度、波度等表面几何形状误差和表面层的物理、机械性能变化。在车削加工中,影响工件表面质量的因素主要有表面粗糙度、冷作硬化、表面残余应力、表面波度等。采用多刃车刀可有效改善工件表面质量。
表面粗糙度
采用多刃车刀可减小每一切削刃的切削深度,从而减小切削力及工件材料的塑性变形,因此可获得较小的表面粗糙度。另外,由于切削层较薄,切削刃与金属材料的冷焊作用较小,可减少积屑瘤、鳞刺的生成。因此,采用多刃车刀可显著提高工件表面粗糙度。 冷作硬化
在切削加工中,金属表层的塑性变形使晶体间产生剪切滑移、晶格扭曲并发生晶粒拉长、破碎及纤维化,从而引起金属材料的冷作硬化。冷作硬化可使工件表层硬度和强度提高,韧性降低,变得硬脆,影响加工表面质量。由于采用多刃车刀可减小材料塑性变形,因此可降低冷作硬化程度。此外,由于多个切削刃相距较近,切削热较难散发,可使刀刃与工件表层接触区温度升高,部分抵消冷作硬化作用。 表面残余应力
图2 塑性变形产生的残余应力
在切削加工中,当表层材料相对基体材料发生形状和体积变化时,在加工表面层将产生残余应力,其大小随深度而变化,外层应力与表层一基体材料交界处的应力方向相反,相互平衡。图2a、2b分别表示由冷塑性变形和热塑性变形引起的残余应力。加工时,在切削力作用下,已加工表面层因受拉应力而产生伸长塑性变形,表面积趋向增大,此时已加工表面层处于弹性变形状态。切削力去除后,工件里层恢复原状,但外层受塑性变形影响不可能完全恢复原状,因而在表层产生残余压应力,里层则产生相应拉应力与之平衡,这就是冷塑性变形引起的残余应力。
热塑性变形引起残余应力的机理为:加工时,工件表层在切削热作用下产生热膨胀,而里层基体材料受温度影响较小,使表层热膨胀受到限制而产生压应力。当切削温度超过材料弹性变形范围后,表层将产生热塑性变形。切削加工结束后,温度下降,材料膨胀恢复,但表层因产生热塑性变形不能完全恢复,因此在表层塑性区产生了残余拉应力,基体材料中则产生与之平衡的压应力。切削过程中的冷塑性变形与热塑性变形产生的残余应力方向相反,可相互抵消一部分。但因切削加工中冷塑性变形较大,热塑性变形较小,所以表面残余应力总体上表现为压应力。
采用多刃车刀加工时,由于切削热不易散发,切削温度较高,因此产生的热塑性变形及引起的残余拉应力sF也相对较大,通过与冷塑性变形引起的残余压应力sB相互抵消,最终可减小工件表面残余应力s残,计算方法为
s残=sF-sB=aEDt-sB
式中:a——线性膨胀系数
E——弹性模量
Dt——温升
由图3所示材料屈服强度曲线可知,TB越高,则sB越小,sF越大,故s残随温升增大较快。
图3 温度与残余应力的关系
图4 刀具与工件的相对振动位移
表面波度
工件表面波度主要由加工系统的颤振引起。当车床径向切入加工时,若切削过程受到一个瞬时扰动,使工件与刀具产生相对振动,就会在工件表面留下一段波纹;在下一转切削时,刀具在带波纹表面切削,切削厚度的变化会引起切削力波动,这种在动态切削力作用下引起的加工激振称为再生颤振。图4所示的刀具与工件相对振动位移分别为Ya和Yb,其方程为 { Ya=|Y|cos(wt+y)
Yb=|Y|coswt
切削厚度随时间变化的分量为
u(t)=Ya-Yb=|Y|[coswt(cosy-1)-sinwtsiny]
=-|Y|2sin(y/2)[sinwtcos(y/2)+coswtsin(y/2)]
=2|Y|sin(y/2)cos[wt+(p/2+y/2)]
由于多刃车刀每个切削刃的初相位不同(分别为y1、y2、…),因此切削厚度随时间变化的分量u(t)也各不相同,即每一时刻各个切削刃的切削厚度不同,这样就破坏了加工系统的再生颤振,从而减小加工表面波度。
多刃车刀由于具有多个切削刃,在车削加工中可减小加工表面粗糙度和表面残余应力,部分消除工件表面冷作硬化和加工系统的再生颤振,从而可有效提高被加工工件的表面质量。